If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2-10m=0
a = 4; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·4·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*4}=\frac{0}{8} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*4}=\frac{20}{8} =2+1/2 $
| 3d-7d-4=4 | | X/11=x-12-4 | | (2+3x)(x-1)=0 | | (4m+3)(m+7)=0 | | 8+2/p=12 | | 3a+13=11a−3 | | 9+n/4.N=64 | | -4=2=2a | | 3d-12.D=10 | | x^2+6x=8x | | 3x-5=-4x=16 | | 16x+16=112 | | 9^(x)=((1)/(3))^(2x-4) | | 3^2x-5*3^x-14=0 | | -4x+5=-7x+1 | | (8n-7)(7n-3)=0 | | -3/c+17=25 | | 8=-6u+4(u+7) | | 4+6n=9n-10 | | −6x+7(3x−6)=−177 | | 6b+2=7b-3 | | 6b-2=7b-3 | | 1+2x=3x+14 | | 11x-1=-2x-63 | | 5-15x=-1 | | 7/3x=-35 | | -3w/2=18 | | -6x+5=5x-72 | | −7x+7(−2x+25)=−56 | | X+2y=1400 | | 3x+18x+5x-12=180 | | 3x+7=-4x-21 |